Tag Archives: GREEN CHEMISTRY

Leather trash turns to medical treasure.

Synopsis by Wim Thielemans and Audrey Moores, Apr 20, 2012

Catalina, M, J Cot, AM Balu, JC Serrano-Ruiz and R Luque. 2011. Tailor-made biopolymers from leather waste valorisation. Green chemistry http://dx.doi.org/10.1039/c2gc16330f.

A versatile and potentially valuable natural material could be easily collected from the abundant waste produced when leather is made from animal hides, according to researchers from Spain who explain their novel process in the journal Green Chemistry.

Leather processing generates large amounts of remnant hides that are generally thrown away. But this solid waste is rich in a valuable and medically useful protein called collagen. This new method to recycle or reuse the waste alleviates the dumping, produces a necessary product and increases sustainable manufacturing.

Collagen is abundant in mammals and is an important part of muscle, tendons, ligaments, skin, guts, vessels and bone. The resilient, soft and flexible material does not trigger immune reactions, making it a rich resource for medical, cosmetics and veterinary applications. Collagen is used for implants, as sutures and in regenerative medicine – a field of medicine that grows new human cells, tissues or organs for transplant.

The researchers tested different extraction scenarios for their effect on the amount and quality of the collagen. They extracted the protein from two different types of processed cowhides to demonstrate the versatility of the technique.

The hides were cut, treated with acid and ground into a water solution. This process allowed the collagen molecules to dissolve in water. The collagen particles ranged in size from a few nanometers to a few dozen nanometers. Because size matters for collagen applications, the particles were filtered and separated according to their size.

To find the best method, they varied a number of factors, such as temperature, leather pieces, size after grinding, the nature of the acid, stir speed and type of water solution. The optimal results for yield came from an extraction using acetic acid – basically vinegar – for 24 hours at 25oC and a smaller particle size after grinding.

Next, they manipulated the extracted collagen molecules to determine their stability and mechanical properties. In fact, the use of collagen from leather is often limited because of the poor mechanical properties of the recovered collagen. Specifically, collagen must be rigid enough while not swelling too much when exposed to water. Here the researchers found a simple chemical treatment to render the collagen firm and stable.

From this method, they made several different kinds of materials – fibers, sponges, films, threads and gels – with rigidity and swelling in water properties necessary for biomedical applications.

The research is a good example of finding new ways to use a waste material for high value applications. More work will need to be done to compare the properties of these materials with commercial collagens. The next step will be to show the collagen source is reliable and free of contamination.

Creative Commons License
The above work by Environmental Health News is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
Based on a work at www.environmentalhealthnews.org.

green test tubes blue flask

EPA cancels $20-million green chemistry grant program, gives no explanation

In an announcement that stunned scientists, the U.S. Environmental Protection Agency has cancelled grant applications for what was supposed to be a $20-million, four-year green chemistry program. The mysterious cancellation comes less than three weeks before the deadline for the proposals. The grants, which were supposed to fund four new centers, would have been a major new source of funding for green chemistry, a field that seeks to design environmentally friendly chemicals and processes that can replace toxic substances. The requests for proposals may be reissued, the EPA said. But the program’s sudden halt and uncertain future — and lack of explanation — have left scientists disheartened. “My reaction is shock that it happened and total dismay that what appeared to be a novel program was cancelled without warning or explanation,” said Eric Beckman, a chemical engineer at the University of Pittsburgh.

2012-0410greenchemistry2
Joshua Vaughn/flickr
Green chemistry’s aim is to design environmentally friendly chemicals and processes that can replace toxic substances currently in use.

By Brett Israel
Senior Editor and Staff Writer
Environmental Health News
April 10, 2012
In an announcement that stunned scientists, the U.S. Environmental Protection Agency has cancelled grant applications for what was supposed to be a $20-million, four-year green chemistry program.

The mysterious cancellation, announced on Friday, came less than three weeks before the April 25 deadline for the grant proposals.

The federal grants, which were supposed to fund four new academic centers, would have been a major new source of funding for green chemistry, a field that seeks to design environmentally friendly chemicals and processes that can replace toxic substances.

The requests for proposals may be reissued, the EPA said Monday. But the program’s sudden halt and uncertain future – and lack of explanation – have left scientists disheartened. Lab researchers had worked for months on their proposals and scientists now fear their hard work will be wasted.

“My reaction is shock that it happened and total dismay that what appeared to be a novel program was cancelled without warning or explanation,” said Eric Beckman, a chemical engineer at the University of Pittsburgh who was working on a proposal.

Terry Collins, a green chemist at Carnegie Mellon University and a pioneer in the field, said the announcement “stunned me.” Collins was on a team of green chemists and other environmental scientists that had been working for months to put together a funding proposal. West Coast institutions, including University of California, Berkeley, also were developing a proposal.

Beckman said he’d never seen such a thing happen before – a government agency pulling the plug on a request for proposals so close to its deadline – in his more than 20 years in academia.

Eric Beckman, a University of Pittsburgh chemical engineer, said he’d never seen such a thing happen before – a government agency pulling the plug on a request for proposals so close to its deadline – in his more than 20 years in academia.The $20 million in funding would be “one of the most significant sources of dedicated support for green chemistry so it is a blow to the community that the call for applications was cancelled without explanation,” said Evan Beach, a green chemist at Yale University. “Everybody was in the home stretch on writing. The preparations took several months.”

The EPA offered no reason for the last-minute cancellation.

 “Given the new and emerging research areas…EPA determined that it was necessary to further explore these research areas and also consider changes to its usual review process,” Kelly Widener, assistant director for research communications at EPA’s National Center for Environmental Research, said in an email response to Environmental Health News.
Widener, who declined to elaborate, said the EPA anticipates re-issuing its requests for proposals in June or July.
Green chemistry, according to the EPA, is “the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances…across the life cycle of a chemical product, including its design, manufacture, and use.”
The new program – to create Centers for Material Life Cycle Safety and Centers for Sustainable Molecular Design – was announced in late December as a part of the EPA’s Science to Achieve Results (STAR) program.
The green chemistry centers were to draw together scientists from wide-ranging disciplines, including engineering, chemistry, social science and physics, to develop “improved methods for the design of next generation chemicals,” the EPA said when it announced the available funding.
“This holistic approach to design, which considers all the stages of a material’s life cycle, provides an opportunity to produce materials which minimize, and preferably eliminate, any associated potential environmental and human health impacts that may occur during the life cycle,” the original request for proposals said
That funding for such a promising area of science was halted without explanation at the last minute has many researchers scratching their heads.
“For the EPA to treat so wastefully the field that holds most of the keys to a good future for the relationships between chemical products and processes and the environment and health is mystifying to say the least,” Collins said. Read more science at Environmental Health News.

Safer anti-coagulants: Kicking out the pig.

Synopsis by Audrey Moores and Wendy Hessler, Feb 29, 2012

2011-1221pigs

An approach combining chemistry and biology improves the process to make important anti-clotting drugs known as heparins. The heparin medicines prevent dangerous blood clots from forming in veins and are needed for surgery and kidney dialysis.

The technique provides easier access to safer drugs that are now either processed from pigs and cows or synthesized in a long, costly lab process. The novel method described in the journal Science provides a realistic alternative to livestock for heparins and is likely to drop the cost of such pharmaceuticals.

The process is not yet ready for large-scale commercial use, but its product yields are impressive.

 

Context

Many pharmaceutical drugs are processed from plants or animals rather than made in a laboratory. While such a strategy may seem more natural, animal-sourced drugs are susceptible to contamination.

Heparins are a family of drugs used for more than 50 years to prevent blood clots in people. These complex molecules come from three main sources. They can be collected from pig intestines or cow lungs, synthesized in a laboratory or collected from animals and then modified in a lab.

The sizes and uses of the three types vary. The animal-sourced drug is the largest. It degrades rapidly in the body and is used for kidney dialysis and surgery. The chemically-altered animal heparin and the synthetic varieties are smaller, longer-lived molecules. Patients with venous thrombosis – the tendency for blood clots to form in veins – take these to prevent the clots.

Safety is an issue with the animal-sourced heparin, the cheapest and most accessible available. In 2007, drug contamination resulted in at least 200 deaths in the United States and raised concerns over the source of heparin.

GlaxoSmithKline synthesizes the smaller-sized heparin under the brand name Arixtra. Their process requires about 50 steps and yields very low amounts of material– around 0.1 percent. As a consequence, this molecule cannot currently replace animal-based heparins for all applications because of its high price.

The risk of contamination and current cost of synthesizing heparin is driving the quest to find a more efficient and cheaper way to make heparin drugs.

 

What did they do?

A team of chemists from the United States applied a strategy called chemoenzymatic synthesis to fabricate the heparin molecule. The method borrows from both chemistry and biology fields.It is an attractive way to synthesize heparin medicines. The drug contamination in 2007 occurred because the heparin collected from animals had an unusual chemical structure. People became allergic and hypersensitive. These side-effects would be avoided using a chemoenzymatic system because the series of chemical and enzymatic reactions needed to produce the drug are much better controlled than those in the animal gut where many proteins can alter the drug-to-be molecule.

In this study, the researchers mimicked the process animals use to make heparins. They chemically synthesized a starting material then added enzymes that lengthened and built the whole heparin molecule. In other words, they transferred what happens in the pig gut into a beaker. This approach is superior to collecting directly from an animal because the reactions are controlled.

To see if the manufactured drugs were effective, the researchers tested them in two different ways in the lab. First, they put them with two key proteins responsible for coagulating blood. Then, they injected rabbits with them and collected the animal blood. The interactions with the proteins alone in a culture and in the blood from the rabbit were measured and compared with the activity of the commercial heparin Arixtra.

 

What did they find?

The researchers discovered they could produce two heparin molecules with the impressive yield of 45 and 37 percent, in 10 and 12 steps respectively. They were able to make several milligrams of the product.

The two newly synthesized heparin molecules were similar in size to as the current Arixtra drug. They also proved as active as Arixtra. The efficacy of the interaction between the drugs and coagulating proteins were similar to Arixtra.

The same was true when the newly developed heparins were tested with rabbits. The drugs interacted with the same proteins as Arixtra.

 

What does it mean?

A more streamlined method to make anti-coagulant drugs may provide a realistic alternative to the animal-sourced pharmaceuticals, which are susceptible to contamination. The new process also produces more heparin product in shorter time and for less money than current synthetic preparations.

This means that the newly made heparins could be used in a wider range of applications than the current synthetic heparin Arixtra, because the reduced cost may open new markets.

This technique isolated 3.5 milligrams of heparin. The obvious next step will be to scale up this process to demonstrate that it is commercially feasible. It is estimated that 10 to 20 tons of heparin drugs are sold every year in the world.

The new drugs must also be tested and properly certified before they can be used commercially. However, the preliminary results of this research effort show that these two heparin molecules should be active anti-coagulant drugs with similar properties as the most popular synthetic version on the market today.

The type of synthesis – which merges chemistry techniques and biological enzyme actions – profiled here may be transferable to the manufacture of other drugs. Read more science at Environmental Health News.

US EPA 2013 Budget and Chemicals Issues.

Elizabeth Grossman has published a new piece in Chemical Watch, entitled “Chemicals fare well in US EPA’s 2013 budget proposals“, which reviews the proposed 2013 US EPA budget on chemicals-related issues.

Specifically related to green chemistry, she finds that,

“The budget allots $13.9m for chemical information collection, management and transparency; $14.9m for screening and assessing chemical risks; and $24.6m for reducing chemical risks. EPA says that in 2013 “the toxics programme will maintain its ‘zero tolerance’ goal in preventing the introduction of unsafe new chemicals into commerce” but notes that thousands of chemicals already in commerce remain unassessed.

The budget’s science and research priorities include an increase of $4.1m in funding for “sustainable molecular design of chemicals” to develop inherently safer processes and products. The budget also requests $20.9m for the EPA’s Pollution Prevention Program which encourages the use of “greener” chemicals, technologies, processes and products, among them the Design for Environment, Environmental Preferable Purchasing, Green Chemistry and Green Engineering programmes.”

For the full piece please go here.

See the EPA Budget webpage

 

Green Chemistry and the Great Lakes Water Quality Agreement

By Lin Kaatz Chary, PhD, MPH, Executive Director,  Great Lakes Green Chemistry Network 

The cornerstone of the Great Lakes Water Quality Agreement (GLWQA), a non-binding agreement between the U.S. and Canada (the Parties) which has been a pillar of Great Lakes chemicals policy on both sides of the border, has been the recognition that preventing the entry of hazardous and toxic substances into the Great Lakes is the most effective way of restoring the quality of the Great Lakes ecosystem and protecting it from further contamination and harm. Building on language originally written for the U.S. Clean Water Act in the 1970’s, the 1987 amended Agreement called for the “virtual elimination of toxic substances in toxic amounts” to be achieved through “zero discharge” of pollutants into the lakes. In addition, the Agreement stressed the need to develop substitutes and alternatives for existing toxic contaminants.
This emphasis on prevention provides a perfect interface for integrating the principles of Green Chemistry and Engineering (“GC&E”) into the GLWQA, and offers, for the first time in the Agreement’s history, an explicit practical strategy for achieving the goals of virtual elimination and zero discharge. One of the problems historically with the GLWQA has been the inability of various stakeholders to come to agreement on how to practically define zero discharge and virtual elimination, with many in the regulated community expressing the concern that neither was achievable.
The framework of green chemistry and green engineering make that argument far less relevant, because the emphasis is shifted to committing to continuous improvement in the development of substitutions and alternatives, and to a model based on prevention rather than management of chemical exposures. GC&E, in the words of a 2010 report by the Center for Green Chemistry and Green Engineering at Yale University, are “systems-based approaches that promote design for reduced hazard across the entire life cycle of chemicals, from design, manufacture, and use to end of life. They integrate knowledge from across chemistry, engineering, environmental science, and toxicology in order to reduce and, ideally, eliminate adverse impacts on health and the environment. GC&E provide a framework for a preventative approach based on innovation that improves technical performance, profits, and social benefit.”[1]
The Yale report goes on to characterize three key areas in which GC&E can be useful, which are quoted here in their entirety with slight modifications to enhance their relevance to the specific needs and process of the GLWQA.
 
1. Technical: The development and deployment of metrics, tools, education, knowledge sharing and communication to support the continuous development and implementation of GC&E-based innovations.
2. Policy: The use of regulatory authorities in a variety of ways, including (but not limited) to help remove market distortions that protect or favor more hazardous alternatives, to provide incentives for GC&E-based alternatives, and to engage in voluntary agreements and collaborations.
3. Financial: The leveraging of funds by the governments of both Parties to support green chemistry and engineering research, development, and implementation.[2]
 At a time when millions of tons of toxic pollutants continue to be released into the Great Lakes basin, the need for a more aggressive and more clearly defined strategy based on this model for addressing the problem is more important than ever. In its 2010 report Partners in Pollution 2, the Canadian group Pollution Watch, using the most recent data available (2007), reported that “285 million kg of pollutants . . . were released and transferred (excluding recycling) . . . into the Great Lakes-St. Lawrence River basin” from reporting facilities.[3] While this actually represents a reduction in releases, this magnitude of chemical loading is still a significant challenge!
And, while both Parties agree that great strides have been made in reaching the “low hanging fruit” and achieving many of the goals set forth by the Binational Toxics Strategy in 1999, the statistics above demonstrate that there is still a long way to go. Better tools for analysis are being developed at EPA’s Sustainable Technology Division, such as their Waste Reduction Algorithm (“WAR”), and the Program to Assist the Replacement of Industrial Solvents (“PARIS”), and both of these are based on green chemistry and engineering principles, which is encouraging. But, will these tools be brought to bear in the new Agreement? Is there enough cross fertilization at EPA and Environment Canada to assure that they will be aware of these tools and formally integrate them into the Agreement? The binational negotiation team has made it clear that neither green chemistry nor green engineering are explicitly referenced in the new Agreement; what does this mean in terms of their recognition and knowledge about the kinds of resources available in their own agencies, let alone at outside institutions? As we will not see any language until after the Agreement has been signed and released to the public, the extent to which GC & E will be part of the new Agreement remains unknown.


[1] Matus, Kira MJ, Beach, Evan, Zimmerman, Julie B., Integrating Green Chemistry and Green Engineering into the Revitalization of the Toxics Substances Control Act, Center for Green Chemistry and Green Engineering, Yale University, New Haven, CT, June, 2010, p.3.
[2] Ibid, p. 4.
[3] Partners in Pollution 2, Pollution Watch, Toronto, CA, 2010, http://www.cela.ca/sites/cela.ca/files/709.ExecutiveSummaryEN.pdf
M7500614-Ginkgo_in_medicine-SPL

Chemistry of Ginkgo

By Mana Sassanpour, 1/26/2011

After reading a book that mentioned the health benefits of ginkgo (leaf pictured right), I decided to see if there were any green chemistry related topics that involved this ancient and revered tree. The journal, Green Chemistry,  has an article about a more efficient means of extracting the useful components of ginkgo (Qingyong Lang and Chien M. Wai Green Chem., 2003, 5, 415-420). The researchers developed a greener method of pressurized water extraction which is a “a more effective, selective, economical and environmentally benign technique.”

However, the article did not make clear WHY they were bothering to finding greener ways to extract these compounds – what does ginkgo do? I could pay £34 GBP ($52.50) to find out why, but I thought doing my own investigation would be more fun and less costly.

My research took me in several directions, including the Encyclopedia of Medicinal Plants by Andrew Chevallier, Rebecca’s Natural Food Store in Charlottesville, VA, and to a friend, John Soong, who knows a little something about everything.

First, some history: the ginkgo tree dates back about 200 million years to the time of the dinosaurs.  Second, my friend John Soong explained that he had grown up eating ginkgo nuts in a rice porridge called congee (left). According to him, the philosophy behind eating ginkgo in Chinese cuisine is that “because the ginkgo tree has survived and lived for so long, if we eat it we will have the same longevity.”

There may be some science behind this belief: the active ingredients in ginkgo are purported to work together to produce a positive effect on the human body. The key ingredients are flavonoids, ginkgolide, and bilobalides. The Encyclopedia claims that ginkgo “improves circulation of blood to the head” which in turn leads to improved memory and is given to people with dementia. Ginkgo is also good for asthma and as an anti-inflammatory. Therefore it is not surprising that ginkgo has been noted as one of the bestselling medicines in Germany.

After my literature search, I drove to Rebecca’s Natural Food Store where one of the employees gave me an impromptu “Ginkgo 101” course. She explained that ginkgo is also a blood thinner and can help reduce the possibility of a stroke. In addition, she said it is “good for capillaries and oxygen uptake especially for those who always have cold hands and feet.” Hmmm: maybe I should start taking ginkgo?

Of course we are not qualified to make judgments or give advice on the medicinal value of ginkgo, but it seems like ginkgo is a very interesting plant. With such a wide array of potential health applications and valuable compounds, it makes sense to find more sustainable and cost effective methods of extraction.

 

References:

1. Pressurized water extraction (PWE) of terpene trilactones from Ginkgo biloba leaves. Qingyong Lang and Chien M. Wai. Green Chem., 2003, 5, 415-420. DOI: 10.1039/B300496C

2. Encyclopedia of Medicinal Plants. By Andrew Chevallier – DK Pub. (1996) – Hardback – 336 pages – ISBN 0789410672


 

purple flower

AGC Photo Competition

Hello All AGC fans! We are proud to announce our first ever competition. We have decided to have a photo contest, and we encourage each of you to participate!
The prompt is: “How do you incorporate green chemistry into your life?”

Please submit a single shot and a brief explanation of how you do this by March 1st 2012 to msassanpour@advancinggreenchemistry.org
There will be four winners! By submitting your photo to this contest you agree that AGC can use your submission on our website and on other green chemistry materials (don’t worry, we’ll give you full credit and publicity!).

 

Now, of course, here are the list of prizes:

1. Gift package from Dirty Beauty, nature-based skincare. Check out their facebook here!
2. Hand-decorated floral green box from Susan Li’s etsy store SusiesBoxes. Check out her facebook page here!
3. Hand-made steampunk candle-holder made of real clock parts from Lisa Schultheis’ etsy store earthluv.
4. Made by Mieka Olive Oil Soap. Check out Made by Mieka’s facebook page here!

Etzkorn solo photo

Green Chemistry at Virginia Tech Part III

For my third and final interview in the Virginia Tech series, I had the privilege of interviewing Dr. Felicia Etzkorn (pictured left), pioneer of the green chemistry course at Virginia Tech. The green chemistry course was her idea back in 2003. She and her colleague, Dr. Tim Long, decided to team-teach it just for fun. A couple of years later Dr. Etzkorn decided she was going to approach it more seriously. As a result, she had to write a course proposal for Virginia Tech’s course catalogue. The course was approved by three different curriculum committee levels. Afterwards, she developed course material and lectures, and taught the class for three years, from 2007 – 2009. She is excited to be teaching it again this Spring 2012.

 

Dr. Etzkorn also applies her passion for green chemistry to the local Blacksburg community. She designed a green science experiment for middle school students. Under the program, she brings the students into one of the labs at Virginia Tech to let them make their own polymer of lactic acid. The procedure allows them to make polylactic acid derived from soybeans, similar to a process used for biodegradable plastic containers for salads.

 

 

The students got a chance to come to Tech and get to do the experiment using solvent free polymerization and a non-toxic catalyst. First they had to stir and heat the mixture to get the polymer following lab procedures. Then the students made small toys by pouring polymer into clay molds they made in art class (pictured right – the brown items: shells, lips et.c are the PLA polymer, the grey figures are clay molds.). Since it does biodegrade the students were even encouraged to compost it. They were really enthusiastic about green chemistry.

 

 

Dr. Etzkorn also studies neural tube defects in mice with Dr. Hrubec, her collaborator. In the experiments, the control mice start getting neural tube disorder at a shocking rate of 20%, leading to many control experiments to see what was causing it. One suspect turned out to be from our every day tap water: epilepsy and bipolar disorder medication Cardamazepine. Dr. Etzkorn explains: “We cannot get any water that doesn’t have it to some extent and the mice are very sensitive to these agents.” The second suspect is a quaternary ammonium compound used to sanitize the lab. More experiments have yet to be conducted to determine the culprit.

 

AGC congratulates the diverse work that Dr. Etzkorn does with green chemistry and environmental health sciences and wishes her success in the future.

 

EPA Research Chief Paul Anastas Announces Plan To Step Down.

InsideEPA.com

Posted: January 5, 2012

EPA’s research chief, Paul Anastas, who has led the agency’s controversial chemical risk assessment program, is leaving the agency next month.

Anastas, the assistant administrator for the Office of Research and Development (ORD) and agency science advisor, announced his plans in email to all ORD staff Jan. 5. Anastas will be returning to Yale University, where he is on leave from his position as a professor of green chemistry.

“With deeply mixed emotions, I am writing to inform you that I will be stepping down from my position . . . in mid-February in order to return to my colleagues and students at Yale University and — most importantly — to my wonderful family in New Haven, Connecticut,” Anastas writes.

Anastas is the second high-level EPA official to leave the agency in the past few months. Late last year, EPA toxics chief Steve Owens left the agency for a position in the private sector. While Anastas did not announce who will assume his EPA responsibilities, informed sources have suggested that Ramona Trovato, ORD associate assistant administrator, may serve as the office’s acting assistant administrator.

EPA Administrator Lisa Jackson told EPA staff in an email that the agency will announce a “formal transition” in the coming weeks. “In the meantime, I assure you that science will remain the cornerstone of all of our Agency’s efforts and EPA scientists will continue to set the standard for cutting edge research and study — work that will yield a healthier, cleaner environment for all Americans,” she wrote Jan. 5.

Many observers have been expecting Anastas to leave, though late last year he denied any plans to depart. “I have no plans to leave. I am honored to be working with the people of ORD and am enjoying it immensely,” Anastas told Inside EPA Nov. 21. “Like all Presidential appointees, I serve at the pleasure of the President.”

But in the Jan. 5 email, Anastas writes, “While after mid-February, I will no longer be serving in an official capacity, I will continue to be part of the broader pursuit of sustainability through my work and research at Yale University. I have said before that while I can’t always guarantee the win, I will always guarantee the fight. I have fought beside you in taking the necessary steps to protect the health and environment of the American public.” Read more…

 

 

U.S. EPA to fund “Centers for Molecular Design”.

Funding Opportunities

U.S. Environmental Protection Agency
Office of Research and Development
National Center for Environmental Research
Science to Achieve Results (STAR) Program

Centers for Sustainable Molecular Design

This is the initial announcement of this funding opportunity.

Funding Opportunity Number: EPA-G2012-STAR-C1

Catalog of Federal Domestic Assistance (CFDA) Number: 66.509

Solicitation Opening Date: December 27, 2011
Solicitation Closing Date: April 25, 2012, 11:59:59 pm Eastern Time

Eligibility Contact: James Gentry (gentry.james@epa.gov); phone: 703-347-8093
Electronic Submissions: Todd Peterson (peterson.todd@epa.gov); phone: 703-308-7224
Technical Contacts: Nora Savage (savage.nora@epa.gov); phone: 703-347-8104
José Zambrana (zambrana.jose@epa.gov); phone: 703-347-8057

Table of Contents:
SUMMARY OF PROGRAM REQUIREMENTS
Synopsis of Program
Award Information
Eligibility Information
Application Materials
Agency Contacts
I. FUNDING OPPORTUNITY DESCRIPTION
A. Introduction
B. Background
C. Authority and Regulations
D. Specific Areas of Interest/Expected Outputs and Outcomes
E. References
F. Special Requirements
II. AWARD INFORMATION
III. ELIGIBILITY INFORMATION
A. Eligible Applicants
B. Cost Sharing
C. Other
IV. APPLICATION AND SUBMISSION INFORMATION
A. Internet Address to Request Application Package
B. Content and Form of Application Submission
C. Submission Dates and Times
D. Funding Restrictions
E. Submission Instructions and Other Submission Requirements
V. APPLICATION REVIEW INFORMATION
A. Peer Review
B. Programmatic Review
C. Funding Decisions
VI. AWARD ADMINISTRATION INFORMATION
A. Award Notices
B. Disputes
C. Administrative and National Policy Requirements
VII. AGENCY CONTACTS

Access Standard STAR Forms (Forms and Standard Instructions Download Page)
View research awarded under previous solicitations (Funding Opportunities: Archive Page)

SUMMARY OF PROGRAM REQUIREMENTS

Synopsis of Program:
The U.S. Environmental Protection Agency (EPA), as part of its Science to Achieve Results (STAR) program, is seeking applications for an interdisciplinary center focusing on the sustainable molecular design of chemicals.  The aim of the center will be to develop a set of parameters and strategies that will establish design criteria regarding the properties of chemicals that will lead to the development of intrinsically less hazardous substances when compared to those currently used in society.  These newly acquired criteria and design principles will direct researchers towards the generation of novel chemicals that will minimize, and preferably eliminate, associated potential environmental and human health impacts that may occur during the life cycle of that chemical. The advent of these novel chemicals and their respective discovery of correlations between a chemical’s inherent properties and their adverse impacts require the development of improved methods for the design of next generation chemicals.

The Center will explore methods, establish knowledge bases, and develop guidance for eliminating and avoiding those attributes or properties of a chemical that most significantly influence their potential impacts. It is also anticipated the guidance for improved design and understanding of inherent chemical properties resulting from research supported under this Request for Applications (RFA) will enable continual improvements in the quality of life without detrimental impairment of public health or the ecosystem. Furthermore, the developed guidance and capability to reduce a substance’s ability to manifest hazard will result in substances which are in direct accordance with the principles of sustainability.

Note:  The term “chemicals” broadly refers to any and all types of materials, including individual chemicals, compounds or mixtures of compounds, endocrine disrupting chemicals (EDCs), and nanomaterials.

Award Information:
Anticipated Type of Award: Grant
Estimated Number of Awards: Up to approximately two (2) awards
Anticipated Funding Amount: Approximately $10 million total for all awards
Potential Funding per Award: Up to a total of $5 million, including direct and indirect costs, with a maximum duration of 4 years.  Cost-sharing is not required.  Proposals with budgets exceeding the total award limits will not be considered.

Eligibility Information:
Public nonprofit institutions/organizations (includes public institutions of higher education and hospitals) and private nonprofit institutions/organizations (includes private institutions of higher education and hospitals) located in the U.S., state and local governments, Federally Recognized Indian Tribal Governments, and U.S. territories or possessions are eligible to apply.  See full announcement for more details.

Application Materials:
To apply under this solicitation, use the application package available at Grants.gov (for further submission information see Section IV.E. “Submission Instructions and other Submission Requirements”).  The necessary forms for submitting a STAR application will be found on the National Center for Environmental Research (NCER) web site, the Forms and Standard Instructions Download Page. If your organization is not currently registered with Grants.gov, you need to allow approximately one week to complete the registration process.  This registration, and electronic submission of your application, must be performed by an authorized representative of your organization.

If you do not have the technical capability to utilize the Grants.gov application submission process for this solicitation, call 1-800-490-9194 or send a webmail message to the NCER Contact Us page at least 15 calendar days before the submission deadline to assure timely receipt of alternate submission instructions.  In your message  provide the funding opportunity number and title of the program, specify that you are requesting alternate submission instructions, and provide a telephone number, fax number, and an email address, if available.  Alternate instructions will be emailed whenever possible.  Any applications submitted through alternate submission methods must comply with all the provisions of this Request for Applications (RFA), including Section IV, and be received by the solicitation closing date identified above.

Agency Contacts:
Eligibility Contact: James Gentry (gentry.james@epa.gov); phone: 703-347-8093
Electronic Submissions: Todd Peterson (peterson.todd@epa.gov); phone: 703-308-7224
Technical Contacts: Nora Savage (savage.nora@epa.gov); phone: 703-347-8104
José Zambrana (zambrana.jose@epa.gov); phone: 703-347-8057

Full Announcement HERE.