Tag Archives: endocrine disruptors

TiPED circle 200

A New Tool to Design Safer Products

   New publication:  A New System to Assess New Chemicals for Endocrine Disruption

    A groundbreaking new paper outlines a safety testing system that helps chemists design inherently safer chemicals and processes.       Resulting from a cross-disciplinary collaboration among scientists, the innovative “TiPED” testing system (Tiered Protocol for Endocrine  Disruption) provides information for making chemicals and consumer products safer. TiPED can be applied at different phases of the chemical design process, and can steer companies away from inadvertently creating harmful products, and thus avoid adding another BPA or DDT to commerce.

    The study, “Designing Endocrine Disruption Out of the Next Generation of Chemicals,” is online in the Royal Society of Chemistry journal Green Chemistry.

    The 23 authors are biologists, green chemists and others from North America and Europe who say that recent product recalls and bans reveal that neither product manufacturers nor the government have adequate tools for dealing with endocrine disrupting chemicals (EDCs).  EDCs are chemicals commonly used in consumer products that can mimic hormones and lead to a host of modern day health epidemics including cancers, learning disabilities and immune system disorders. The authors conclude that as our understanding of the threat to human health grows, the need for an effective testing strategy for endocrine disrupting chemicals becomes imperative.

Historically, chemists have aimed to make products that are effective and economical. Considering toxicity when designing new chemicals has not been their responsibility. This collaboration between fields expands the scope of both biologists and chemists to lead to a way to design safer chemicals.

Scientific understanding of endocrine disruption has developed rapidly over the past 2 decades, providing detailed, mechanistic insights into the inherent hazards of chemicals.  TiPED uses these insights to guide chemical design toward safer materials.  And as consumers are increasingly concerned about endocrine disruption (eg BPA, flame retardants) they are demanding products that do not contain EDCs, creating a market opportunity for companies that can take advantage of the new science.

There is a companion website to the paper, www.TiPEDinfo.com. One can access the paper there and learn more about the TiPED system.

 

New Tools to Design Safer Chemicals

PRESS RELEASE: “A New tool to design safer products”

New publication:  A New System to Assess New Chemicals for Endocrine Disruption

A groundbreaking new paper outlines a safety testing system that helps chemists design inherently safer chemicals and processes. Resulting from a cross-disciplinary collaboration among scientists, the innovative “TiPED” testing system (Tiered Protocol for Endocrine Disruption) provides information for making chemicals and consumer products safer. TiPED can be applied at different phases of the chemical design process, and can steer companies away from inadvertently creating harmful products, and thus avoid adding another BPA or DDT to commerce.

The study, “Designing Endocrine Disruption Out of the Next Generation of Chemicals,” is online in the Royal Society of Chemistry journal Green Chemistry.

The 23 authors are biologists, green chemists and others from North America and Europe who say that recent product recalls and bans reveal that neither product manufacturers nor the government have adequate tools for dealing with endocrine disrupting chemicals (EDCs).  EDCs are chemicals commonly used in consumer products that can mimic hormones and lead to a host of modern day health epidemics including cancers, learning disabilities and immune system disorders. The authors conclude that as our understanding of the threat to human health grows, the need for an effective testing strategy for endocrine disrupting chemicals becomes imperative.

Historically, chemists have aimed to make products that are effective and economical. Considering toxicity when designing new chemicals has not been their responsibility. This collaboration between fields expands the scope of both biologists and chemists to lead to a way to design safer chemicals.

Scientific understanding of endocrine disruption has developed rapidly over the past 2 decades, providing detailed, mechanistic insights into the inherent hazards of chemicals.  TiPED uses these insights to guide chemical design toward safer materials.  And as consumers are increasingly concerned about endocrine disruption (eg BPA, flame retardants) they are demanding products that do not contain EDCs, creating a market opportunity for companies that can take advantage of the new science.

There is a companion website to the paper, www.TiPEDinfo.com. One can access the paper there and learn more about the TiPED system.

 

 

New stain repellent chemical doubling in blood every 6 years.

Nov 26, 2012

Glynn, A, U Berger, A Bignert, S Ullah, M Aune, S Lignell and PO Darnerud. 2012. Perfluorinated alkyl acids in blood serum from primiparous women in Sweden: Serial sampling during pregnancy and nursing, and temporal trends 1996-2010. Environmental Science and Technology http://dx.doi.org/10.1021/es301168c.


Synopsis by Craig Butt and Wendy Hessler
2012-1119frisbeeinrain
erikschmidt/flickr

 

As the phased-out stain repellent PFOS steadily decreases in people, its replacement is rising rapidly at levels that are doubling every six years, a Swedish study shows. Levels of perfluorobutane sulfonate (PFBS) in the women’s blood rose 11 percent per year between 1996 and 2010. Whether there are any potential health effects of these exposures — which are still far lower than PFOS levels — is unknown.

 

Context

Polyfluorinated and perfluorinated chemicals (PFASs) are applied to clothing, furniture, carpeting, cookware and food packaging to make the products stain repellent. PFASs – commonly referred to as PFCs – are a large group of chemicals that are unique because they repel both grease and water.

The PFAS chemicals used in commercial products fall into two main categories: the large fluorinated polymers that are used in clothing, furniture and carpet treatments and the phosphate surfactants that are used to coat paper.

Commercial products often contain the parent PFAS chemicals used to make the polymers and phosphate surfactants – called precursors – as impurities. PFASs break down in the atmosphere and in our bodies to form very long-lived perfluorinated alkyl acids (PFAAs).

People are exposed to PFAAs and their precursors mainly through food, air and water. Studies suggest the chemicals may contribute to kidney damage, and prenatal exposures have been linked to low birth weight.

Two of the most well-known and well-studied PFAA varieties are perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). In addition to forming as breakdown products, small amounts of PFOS and PFOA were directly produced for specialized products. PFOS was used in fire-fighting foams as well as in the semiconductor industry. PFOA was used in the production of Teflon, but is typically not detected in the final products.

In 2002, the 3M Company – a leading manufacturer of PFOS and PFOA – voluntarily stopped manufacturing both PFOS and the chemicals that degrade to form PFOS because they were accumulating in humans globally and in animals – such as polar bears – that live in remote areas (Hansen et al. 2001; Giesy and Kannan 2001; Butt et al. 2010).

The company has substituted PFOS-based chemicals with another PFAA variety that is based on perfluorobutane sulfonate (PFBS). PFBS has four carbons whereas PFOS has eight. Otherwise, their molecular makeup is identical.

The smaller PFBS clears from the human body much faster than PFOS. PFOS has a half-life in people of 4 – 5 years, but PFBS’s half-life is only 26 days (Olsen et al. 2009).

After 3M stopped making PFOS-based compounds, production of other compounds made by another manufacturing process rapidly increased. These are called fluorotelomer-based chemicals. The fluorotelomer compounds are used for the same purpose as the PFOS-based compounds were: to make fluorinated polymers and surfactants. However, these chemicals degrade to form perfluorinated carboxylates (PFCAs), including PFOA.

Due to the increasing concern about PFOA, the eight major manufacturers have committed to eliminate PFOA emissions by 2015.

 

What did they do?

The research is part of a larger study that examined time trends of persistent organic pollutants in the blood and breast milk of pregnant and nursing women in Uppsala County, Sweden.

Blood samples were collected from first-time mothers, aged 19 – 41 years, three weeks after delivery. Samples were collected each year between 1996 and 2010, except in 2003 and 2005. For each year, several individual blood samples were pooled together for analysis. In general, three pooled samples per year were analyzed.

The study investigated levels of 13 PFAAs, including PFBS and PFOS. The study also measured perfluorooctane sulfonamide (FOSA), which is known to degrade to PFOS.

A unique aspect of this study was the ability to measure PFBS levels at very low levels.  It was this improved analytical capability that allowed the researchers to detect the PFBS  trends over time.

In addition to examining time trends, the study also investigated PFAA trends at different stages during pregnancy and after delivery.

 

What did they find?

The study showed that PFBS blood concentrations in the Swedish women increased by 11 percent per year between 1996 and 2010. The levels doubled every 6.3 years. This is the first study to show increasing PFBS levels in humans.

However, during the same time period, PFOS levels decreased by 8.4 percent per year. The study also showed decreasing levels of perfluorodecane sulfonate (PFDS), PFOA and FOSA.

In contrast, blood levels of two PFCAs – perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) – increased by 4.3 percent and 3.8 percent, respectively, from 1996 to 2010.

The study also looked for longer-chain length PFCAs: perfluorododecanoate (PFDoA), perfluorotridecanoate (PFTrA) and perfluorotetradecanoate (PFTA).  But these PFCAs were not found in the women’s blood.

 

What does it mean?

Perfluorobutane sulfonate or PFBS – the chemical that replaced the PFOS-based fluorinated chemicals used as stain repellents – is building up in human blood with levels doubling every six years. This is the first study to show increasing PFBS levels in humans.

The study showed that PFBS levels in Swedish women are rapidly increasing. This means that humans are widely exposed to PFBS and its precursors. Exposure to these chemicals has increased dramatically from 1996 to 2010.

These findings were surprising because it was thought that PFBS would not accumulate in humans due to its very short half-life (26 days). But the new research shows that PFBS is building up at an alarming rate.

However, PFBS levels are still about 75 times lower than PFOS.

The study did not investigate whether there were any health effects associated with the increasing PFBS levels. There have been few toxicology studies on PFBS, and the toxic effects are generally less than PFOS and PFOA (Lieder et al. 2009).

PFBS-based chemicals were introduced as replacements for PFOS-based chemicals after 3M stopped their manufacture in 2002. In the current study, PFBS levels did not start increasing until 2002. Presumably, this increase in PFBS blood levels is a reflection of increased use of PFBS precursors in commercial products and their release into the environment after 2002.

The new study also showed that PFOS and FOSA levels are decreasing in Swedish women’s blood. FOSA is formed when PFOS precursors are metabolized in the body.

These results show that 3M’s PFOS ban in 2002 had a rapid effect on PFOS blood levels. Studies from the United States (Kato et al. 2011; Olsen et al. 2012) and Norway (Haug et al. 2009) have also shown decreasing PFOS blood levels after the 3M ban.

In contrast, PFNA and PFDA levels were shown to increase in the Swedish women. These chemicals are breakdown products of fluorotelomer-based compounds that are used in some polymers and surfactants. They have similar uses as the PFOS-related chemicals. In addition, PFNA is used in the production of polyvinylidene fluoride (PVDF) and trace amounts can be detected in the final products. Production of fluorotelomer chemicals increased after the 3M PFOS ban. The increasing blood levels of these chemicals most likely represents the increased use of their precursors in commercial products.

Because the study only monitored Swedish women, it will be necessary to confirm the trends in other regions of the world. This is because fluorinated chemical use varies in different areas of the world. For example, China began producing PFOS-chemicals in 2003. Their production in China may represent a new source of PFOS to the world.

Scientists are concerned when blood levels of a chemical increase in our bodies because it shows that our exposure is increasing. However, it is necessary to determine if the contaminant levels are enough to cause harmful effects in wildlife and people.  Future research is needed to determine if the increasing PFBS levels are affecting human health.

Resources

Buck, RC, J Franklin, U Berger, JM Conder, IT Cousins, P de Voogt, AA Jensen, K Kannan, SA Mabury and SPJ van Leeuwen. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management 7:513-541.

Butt, CM, U Berger, R Bossi and GT Tomy. 2010. Levels and trends of poly- and perfluorinated compounds in the arctic environment. Science of the Total Environment 408:2936-2965.

Giesy, JP and K Kannan. 2001. Distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology 35:1339-1342.

Hansen, KJ, LA Clemen, ME Ellefson and HO Johnson. 2001. Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environmental Science & Technology 35:766-770.

Haug, LS, C Thomsen and G Bechert. 2009. Time trends and the influence of age and gender on serum concentrations of perfluorinated compounds in archived human samples. Environmental Science & Technology 43:2131-2136.

Kato, K, LY Wong, LT Jia, Z Kuklenyik and AM Calafat. 2011. Trends in exposure to polyfluoroalkyl chemicals in the U.S. population: 1999-2008. Environmental Science & Technology 45:8037-8045.

Lieder, PH, RG York, DC Hakes, S-C Chang and JL Butenhoff. 2009. A two-generational gavage reproduction study with potassium perfluorobutanesulfonate (K+PFBS) in Sprague Dawley rat. Toxicology 259:33-4.

O’Connor, Mary Catherine. Greenpeace scolds outdoor apparel makers for chemical use. Outside Magazine Nov 12, 2012.

Olsen, GW, SC Chang, PE Noker, GS Gorman, DJ Ehresman, PH Lieder and JL Butenhoff. 2009. A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and human. Toxicology 256:65-74.

Olsen, GW, CC Lange, ME Ellefson, DC Mair, TR Church, CL Goldberg, RM Herron, Z Medhdizadehkashi, JB Nobiletti, JA Rios, WK Reagen and LR Zobel. 2012. Temporal trends of perfluoroalkyl concentrations in American Red Cross adult blood donors, 2000-2010. Environmental Science & Technology 46:6330-6338.

Designing the next generation of sustainable chemicals.

Environmental Factor, November 2012 see original article here.

By Thaddeus Schug

Tom Zoeller, Ph.D., Jerry Heindel, Ph.D., and Wim Thielemans, Ph.D.  Heindel, center, goes to work creating a toxic pumpkin, while Tom Zoeller, Ph.D., left, and Wim Thielemans, Ph.D., take part in the fun. (Photo courtesy of Pete Myers)

Scientists committed to developing green solutions for replacing problem chemicals in the marketplace gathered Oct. 15-17 for a meeting on “Building the Path Forward for the Next Generation of Sustainable Chemicals,” held at the Rockefeller Brothers Fund Pocantico Center in Tarrytown, N.Y.

The meeting, sponsored by the non-government organizations Advancing Green Chemistry  and Environmental Health Sciences,  brought together a mixture of chemists, toxicologists, and biologists. Representatives from NIEHS and NTP included Division of Extramural Research and Training program administrators Jerry Heindel, Ph.D., and Thaddeus Schug, Ph.D.; Kristina Thayer, Ph.D., director of the newly named NTP Office of Health Assessment and Translation; and NTP Biomolecular Screening Branch Chief Ray Tice, Ph.D.

Designing safer chemicals

There are more than 83,000 chemicals in commerce today, many of which pose potential toxic hazards to human health and the environment. The challenge facing chemists designing replacement materials involves figuring out what kind of testing will need to be done to determine if the new chemical is safer than current ones to human health and the environment. One area of growing concern is how to ensure that the next generation of chemicals does not have the potential to act as endocrine disrupting compounds.

The meeting at Pocantico aimed to build upon a new set of testing tools — the Tiered Protocol for Endocrine Disruptors (TiPED) — developed by the group over the past two years. The protocol, which will be published online Dec. 6 in the Royal Society of Chemistry journal Green Chemistry,  is not regulatory, but rather a tool to guide chemists as they develop a new chemical, to give them confidence as to whether the substance is or is not likely to be an endocrine disruptor.

The TiPED protocol offers a five-tiered approach, starting with what should be the fastest and cheapest assays, and working through increasingly specialized tests. The initial two phases rely on predictive computer modeling and high-throughput screening, to quickly weed out problem chemicals. These tests are followed by more specific in vitro cell-based screening assays with a goal of refining, reducing, and replacing animal testing as much as possible. The last two tiers are whole animal assays, to be used for looking for integrated endpoints and less understood systemic responses.

“The idea is that if chemists hit a positive early on, they would either go back to the drawing board or, if that positive was in a specific area, such as an estrogen receptor in a high throughput assay, they would follow that up with more comprehensive assays,” said Heindel. “A hit anywhere along the tiered system means chemists need to pull back, reanalyze, or throw the chemical out.”

The project emphasizes fundamental changes in the way that scientists design new chemicals, and in the process of bringing them into the marketplace. Chemists generally have little training in toxicology, so this plan offers guidelines they can follow early on in the product development process.

Moving forward with the plan

Following a team-building exercise on the evening of Oct. 15, involving pumpkins and toxicological design criteria, the first full day of the meeting was divided into discussion sessions aimed toward refining the specific testing strategies within each phase of the screening model. A good deal of time was dedicated to establishing criteria needed to assess the quality of assays within each tier of the protocol.

The meeting wrapped up with a discussion on strategies to conduct test runs of the protocol, using test chemicals synthesized by John Warner, Ph.D., president and founder of the Warner Babcock Institute for Green Chemistry.

(Thaddeus Schug, Ph.D., is a health scientist in the NIEHS Division of Extramural Research and Training and a regular contributor to the Environmental Factor.)

Disclaimer: This report was written by members of the NIEHS staff based on materials prepared for this meeting and the discussions that took place there. It reflects the views of the authors and not necessarily those of the Rockefeller Brothers Fund, its trustees, or its staff.

 

Coach Barn of the Pocantico Center, which is also known as the John D. Rockefeller Estate  The meeting was held on the ground floor of the Coach Barn of the Pocantico Center, which is also known as the John D. Rockefeller Estate. Take a video tour.  (Photo courtesy of Ray Tice)
Ray Tice, Ph.D., and Kristina Thayer, Ph.D.  Tice, left, and Thayer take part in a discussion of the endocrine disruptor screening protocol. (Photo courtesy of Pete Myers)
Tiered Protocol for Endocrine Disruptors (TiPED) working group  The TiPED working group enjoyed the fall weather and the beautiful scenery at the Pocantico Center in Tarrytown, N.Y. (Photo courtesy of Ray Tice)
imgp5348q

“Don’t put that junk on your junk”


I recently said this to my favorite cyclist when discussing that he may not want to apply chamois cream containing parabens (the junk) to his junk. Male cyclists are repeatedly applying (maybe daily, for 5-7 hours at a time) these paraben containing creams to their reproductive parts. Research is showing that maybe they should reconsider.

 

You may see parabens listed as “methylparaben” “propylparaben” or “butylparaben” Etc.  Don’t let that fool you; these compounds are all structurally and functionally similar compounds, each just has an additional carbon group – the methyl, propyl, or butyl.

 

Parabens’ alias is alkyl hydroxy benzoate, not as easily recognizable, but still present on food and cosmetic labels. You can find these parabens in hair products, skin care products, or even your salad dressing! For male cyclists, they are in most creams that are applied to the groin area to alleviate chafing against the saddle of the bike.

 

Studies have shown that parabens can mimic the female sex hormone estrogen (Gomez et al 2005) and in turn can act as endocrine disruptors, inhibiting “testosterone (T)-induced transcriptional activity” (Chen et al 2007). Also, “exposure of post-weaning mammals to butyl paraben adversely affects the secretion of testosterone and the function of the male reproductive system.” Similar effects can be seen with propyl paraben (Oishi 2002).

 

What are other potential effects of this chemical on males? Recent research has shown parabens in association with  breast cancer, though causality has not yet been established (Khanna et al 2012).  This may seem irrelevant for men unless one considers the fact that breast cancer among men is actually on the rise.

 

Additionally, these chemicals may reduce male fertility. Butylparaben was shown in the lab to have an adverse effect on the male mouse reproductive system in that it damaged the late steps of spermatogenesis in the testis (Oishi 2002). Similar effects can be seen for other forms of parabens. They are also suspected of affecting the mitochondria in rat testes, reducing virility (Tavares et al 2008).

 

Male cyclists might want to look for anti-chafe chamois creams that do not contain parabens, such as creams containing lanolin, the oil in sheep’s wool. You can even make lanolin cream in your own home, following this recipe (but make sure the lanolin you use is high quality and pesticide free).

 

Alternatively, one can pay closer attention to the label on chamois cream to ensure that it does not contain parabens.

 

If you are a cyclist, know a cyclist, or love a cyclist, please share this with them.

 

By: Mana Sassanpour

 

Sources:

1. Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. J. Chen, K.C. Ahn, N.A. Gee, S.J. Gee, B.D. Hammock, B.L. Lasley. Toxicology and Applied Pharmacology. Volume 221, Issue 3, 278–284, 2007.

 

2. Effects of propyl paraben on the male reproductive system. S. Oishi. Food and Chemical Toxicology. Volume 40, Issue 12, 1807 – 1815, 2002.

 

3. Estrogenic activity of cosmetic components in reporter cell lines: parabens, UV screens, and musks. E. Gomez, A. Pillon, H. Fenet, D. Rosain, M. J. Duchesne, J. C. Nicolas, P. Balaguer, C. Casellas. 
Journal of Toxicology and Environmental Health, Part A 
Vol. 68, Iss. 4, 2005.

 

4. Male breast carcinoma: increased awareness needed. J. White, O. Kearins, D. Dodwell, K. Horgan, A.M. Hanby, V. Speirs. Breast Cancer Research. Volume 13, Issue 5, 219, 2011.

 

5. Organ toxicity and mechanisms: effects of butyl paraben on the male reproductive system in mice. S. Oishi. Archives of Toxicology. Volume 76, Number 7, 423-429, 2002.

 

6. Parabens enable suspension growth of MCF-10A immortalized, non-transformed human breast epithelial cells. S Khanna and P.D. Darbre. Journal of Applied Toxicology. doi: 10.1002/jat.2753, 2012.

 

7. Parabens in male infertility—Is there a mitochondrial connection? R.S. Tavares, F.C. Martins, P.J. Oliveira, J. Ramalho-Santosa, F.P. Peixoto. Reproductive Toxicology. Volume 27, Issue 1, 1-7, 2009.

green bubbles beakers

Making Safer Products: A Chemical Design Protocol for Chemists

AGC session at Green Chemistry & Engineering Conference 2012 

Tuesday, June 19, 3:20 –  5:20 / McKinley Room

 

Using Scientific Findings From the Environmental Health Sciences to Avoid Endocrine Disruption in the Chemical Design Process

Pete Myers, Environmental Health Sciences

Karen Peabody O’Brien, Advancing Green Chemistry

A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid green chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by green chemists in the design of new materials.

Endocrine Disrupting Chemicals – Principles of Endocrinology for Chemical Design and Public Health Protection.

R. Thomas Zoeller, Department of Biology, University of Massachusetts, Amherst

Epidemiological and experimental studies continue to show adverse effects of endocrine disrupting chemicals (EDCs) from exposure levels far below what risk assessments indicate are safe. Because EDCs interfere with hormone action, it is essential to design experiments and interpret their results in terms of the very large literature that informs us about the role of endocrine systems in health and disease. Principles of endocrinology important to this field include hormone-receptor interactions, the spatial and temporal characteristics of hormone action in relation to development and adult health, and the regulatory circuits that control delivery of hormones to the proper targets at the proper time. These principles should inform basic research and regulatory science as well as to guide chemists in the design of safe chemical products.

The Relationships Between Exposures to Endocrine Disrupting Chemicals and Adverse Human Health Effects.

Laura N. Vandenberg,

 Department of Biology and the Center for Regenerative and Developmental Biology, Tufts University

A growing number of studies overwhelmingly suggest that environmentally relevant doses of EDCs influence human health and disease. Hundreds of human and animal studies challenge traditional concepts in toxicology, in particular the dogma that “the dose makes the poison”, because EDCs can have effects at low doses that are not predicted by effects at higher doses.  Additionally, a large body of evidence indicates that hormones and EDCs produce non-monotonic dose responses (NMDRs), defined as non-linear relationships between dose and effect where the slope of the curve changes sign within the range of doses examined. These data indicate that the effects of low doses cannot be predicted by high dose studies. Thus, fundamental changes in how chemicals are tested are needed to protect human health.

green test tubes blue flask

EPA cancels $20-million green chemistry grant program, gives no explanation

In an announcement that stunned scientists, the U.S. Environmental Protection Agency has cancelled grant applications for what was supposed to be a $20-million, four-year green chemistry program. The mysterious cancellation comes less than three weeks before the deadline for the proposals. The grants, which were supposed to fund four new centers, would have been a major new source of funding for green chemistry, a field that seeks to design environmentally friendly chemicals and processes that can replace toxic substances. The requests for proposals may be reissued, the EPA said. But the program’s sudden halt and uncertain future — and lack of explanation — have left scientists disheartened. “My reaction is shock that it happened and total dismay that what appeared to be a novel program was cancelled without warning or explanation,” said Eric Beckman, a chemical engineer at the University of Pittsburgh.

2012-0410greenchemistry2
Joshua Vaughn/flickr
Green chemistry’s aim is to design environmentally friendly chemicals and processes that can replace toxic substances currently in use.

By Brett Israel
Senior Editor and Staff Writer
Environmental Health News
April 10, 2012
In an announcement that stunned scientists, the U.S. Environmental Protection Agency has cancelled grant applications for what was supposed to be a $20-million, four-year green chemistry program.

The mysterious cancellation, announced on Friday, came less than three weeks before the April 25 deadline for the grant proposals.

The federal grants, which were supposed to fund four new academic centers, would have been a major new source of funding for green chemistry, a field that seeks to design environmentally friendly chemicals and processes that can replace toxic substances.

The requests for proposals may be reissued, the EPA said Monday. But the program’s sudden halt and uncertain future – and lack of explanation – have left scientists disheartened. Lab researchers had worked for months on their proposals and scientists now fear their hard work will be wasted.

“My reaction is shock that it happened and total dismay that what appeared to be a novel program was cancelled without warning or explanation,” said Eric Beckman, a chemical engineer at the University of Pittsburgh who was working on a proposal.

Terry Collins, a green chemist at Carnegie Mellon University and a pioneer in the field, said the announcement “stunned me.” Collins was on a team of green chemists and other environmental scientists that had been working for months to put together a funding proposal. West Coast institutions, including University of California, Berkeley, also were developing a proposal.

Beckman said he’d never seen such a thing happen before – a government agency pulling the plug on a request for proposals so close to its deadline – in his more than 20 years in academia.

Eric Beckman, a University of Pittsburgh chemical engineer, said he’d never seen such a thing happen before – a government agency pulling the plug on a request for proposals so close to its deadline – in his more than 20 years in academia.The $20 million in funding would be “one of the most significant sources of dedicated support for green chemistry so it is a blow to the community that the call for applications was cancelled without explanation,” said Evan Beach, a green chemist at Yale University. “Everybody was in the home stretch on writing. The preparations took several months.”

The EPA offered no reason for the last-minute cancellation.

 “Given the new and emerging research areas…EPA determined that it was necessary to further explore these research areas and also consider changes to its usual review process,” Kelly Widener, assistant director for research communications at EPA’s National Center for Environmental Research, said in an email response to Environmental Health News.
Widener, who declined to elaborate, said the EPA anticipates re-issuing its requests for proposals in June or July.
Green chemistry, according to the EPA, is “the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances…across the life cycle of a chemical product, including its design, manufacture, and use.”
The new program – to create Centers for Material Life Cycle Safety and Centers for Sustainable Molecular Design – was announced in late December as a part of the EPA’s Science to Achieve Results (STAR) program.
The green chemistry centers were to draw together scientists from wide-ranging disciplines, including engineering, chemistry, social science and physics, to develop “improved methods for the design of next generation chemicals,” the EPA said when it announced the available funding.
“This holistic approach to design, which considers all the stages of a material’s life cycle, provides an opportunity to produce materials which minimize, and preferably eliminate, any associated potential environmental and human health impacts that may occur during the life cycle,” the original request for proposals said
That funding for such a promising area of science was halted without explanation at the last minute has many researchers scratching their heads.
“For the EPA to treat so wastefully the field that holds most of the keys to a good future for the relationships between chemical products and processes and the environment and health is mystifying to say the least,” Collins said. Read more science at Environmental Health News.

Smelling good without stinking up the environment.

Boethling, RS. 2011. Incorporating environmental attributes into musk design. Green Chemistry http://dx.doi.org/10.1039/c1gc15782e.

Synopsis by Wim Thielemans, Dec 01, 2011

Chemists developing compounds used to create fragrances can weed out chemicals that don’t meet toxicity and environmental standards early in the design process, finds a study that predicted the toxicity and persistence of a variety of musk chemicals using a sophisticated computer program.

The program – developed by the U.S. Environmental Protection Agency – uses molecular structure and other chemical attributes to predict if a compound will easily break down in the environment. The results are published in the journal Green Chemistry.

While the tools are not perfect, they help for early screening. One important use would be to compare the environmental effects of chemical classes or individual molecules to determine whether to proceed or block a chemical’s development. Further analysis and testing on the musks given the go ahead would still be needed to avoid producing a harmful molecule that might not be tagged as dangerous at this stage of development, because the computer modeling did not consider many potential mechanisms of toxicity, for example, whether or not the molecule is a potential endocrine disruptor.

The findings show that chemists can avoid making certain types of musks that may be harmful. Musks add scent to consumer products and can harm the environment. Predicting a compound’s later performance at a very early stage – even before the molecules are made – would make design and development of safer fragrance musks much cheaper.

Fragrances are used in a wide variety of products from the obvious perfumes to soaps, detergents, shampoos and toothpastes. The natural and synthetic musk compounds produce the rich and deep smells that form the base of some fragrances. The long-lived musks are chemically heavy and evaporate slowly. Their scents surface well after their use – at least 30 minutes – and may linger for a day. They also help hold lighter smells for a longer period of time.

These same longevity properties mean the compounds tend to end up in municipal wastewater and its solid sludge, which is often reused as fertilizer. Through these routes, musk compounds are released into the environment. They can accumulate in soils, wildlife and people. Several synthetic musks are toxic to fish, algae and aquatic invertebrates.

Chemists still design new synthetic musks. They use tools to predict the compounds’ future performances as a fragrance. A similar tool to predict their toxicity, their accumulation in the environment and their persistence in the environment is needed. A compound persists in the environment if it does not biodegrade.

The new research from the U.S. EPA looked at 106 synthetic and natural musk chemicals. The predictions on the environmental impact of these musks were compared to experimental data.

The study found and identified specific types of musks that were less problematic than others. It also verified that existing tools and knowledge could be used to screen new molecules for their potential to be toxic, not break down and accumulate.

According to the author, the research shows “that it can be convenient and useful to include environmental properties in that screening prior to any testing or manufacture of a chemical.” The tools and knowledge exist, and it is time to apply them to chemical production for “economic as well as environmental sense.”

IMGP5252

AGC at UVA

On Wednesday November 9, 2011 UVA Green Chemistry hosted AGC’s Mana Sassanpour for a lecture and discussion on “What is Green Chemistry?”

Mana gave an overview of green chemistry, Paul Anastas and John Warner’s 12 principles of green chemistry, followed by a description of Advancing Green Chemistry’s involvement in the field.

Mana: “The discussion that followed after the lecture was phenomenal! Almost everyone who attended the lecture asked a question. I had never seen such an involved group of students!”

We started off discussing endocrine disrupting chemicals, for example: bisphenol A (BPA). What exposure level is safe? Really large amounts are harmful, but so are really tiny amounts  – the correlation is not linear. We proceeded to discuss how we could test compounds for toxicity if the correlation is not linear. This led to a discussion on general methods for testing for toxicity, what the current standards are and how we could do better. We discussed the ethical concerns around animal testing and other tools.

The students were curious to find out what some of the common sources of BPA exposure are, and were surprised to find out that it is found in many disposable water bottles and plastic containers. A concerned student then asked for advice on how to avoid BPA. The response was: don’t use plastic food containers – but if you do, definitely do not microwave food in them because that allows the BPA and other contaminants to leach into your food. Store food in glass jars instead.

The ladies in the crowd then opened a discussion on cosmetics. Like many, they had never considered the chemicals in their beauty products. We talked about how many chapsticks and lip balms have oxybenzone in them – a component that acts as a sunscreen but is also a carcinogen. Most girls in the room immediately reached for their chapsticks to look at ingredients. A hand darted up to ask me “My chapstick has 6% oxybenzone – should I throw it away?” From this topic we went on to discuss how many sunscreen components do not degrade and go into our rivers and affect the reproductive anatomy of frogs and fish. This then led to how effects on amphibians predict effects on humans.

Needless to say, the conversation was great – filled with great facts, questions, and laughs!

Applying 21st century toxicology to green chemistry.

By Eddy Ball
October 2011

Scientists aiming to develop real-world solutions for problem chemicals gathered at a workshop on “Applying 21st Century Toxicology to Green Chemical and Material Design” Sept. 20-21, at the House of Sweden Event Center in Washington, D.C. The workshop was part of the National Academy of Sciences (NAS) ongoing series organized by the Committee on Emerging Science for Environmental Health Decisions sponsored by NIEHS. This workshop was unique in that it was co-hosted by the National Science and Technology Councils (NSTC) Committee on Environment, Natural Resources, and Sustainability (CENRS) Subcommittee on Toxics and Risks.

With more than 83,000 chemicals available for use in the U.S. today, there is rising concern about potential toxic properties these chemicals pose in relation to human health and the environment. This issue has given rise to the field of green chemistry — the science-based design of chemicals to minimize the use and generation of hazardous substances.

Visioning a green future

The workshop brought together chemists, toxicologists, and biologists to define common goals, identify knowledge gaps, and promote applied research aimed at expediting the application of new approaches to toxicology to the emerging field of green chemistry. As he opened the meeting, NIEHS Toxicology Liaison and co-chair of the NSTC Subcommittee on Toxics and Risks Christopher Weis, Ph.D., challenged participants to think of a future with safer chemicals and less need for regulation.

Paul Anastas, Ph.D., assistant administrator of the U.S. Environmental Protection Agency Office of Research and Development, who is often referred to as the father of green chemistry, then set the stage for the meeting’s three sessions with a presentation, titled “Vision of a Green Chemical Future.” Anastas told participants, “There are tremendous advantages — environmental, economic, and health-related — in implementing green chemistry into the design and production of the next generation of chemicals.”

The main focus of the sessions centered on identifying replacements for problematic chemicals and the emerging tools available for toxicology testing. Representatives from industry, academia, and government agencies discussed the utility of rapid assessment approaches in toxicology, including high-throughput biochemical screening, in vitro cellular approaches, and rapid assessments using aquatic organisms.

Putting the plan to action

During session three, Thaddeus Schug, Ph.D., a postdoctoral fellow on detail to the NIEHS Division of Extramural Research and Training, highlighted a collaborative project that is constructing a protocol for chemists to flag endocrine disruptors early in chemical development. “The protocol is not regulatory,” Schug emphasized, “but a guide chemists can follow as they develop a chemical, to give them confidence as to whether the substance is or is not an endocrine disruptor.”

Thaddeus Schug, Ph.D.
“What we propose to do is put the fastest, cheapest testing up front, the computational modeling, followed by high throughput screening and the zebrafish models,” Schug explained. The first-tier testing would be followed up with more specific testing as a chemical moves farther along the developmental process. (Photo courtesy of Steve McCaw)

The project, which is sponsored by the groups Advancing Green Chemistry and Environmental Health Sciences, publisher of Environmental Health News, has come up with a tiered system.

“The idea is if chemists hit a positive early on, they would either go back to the drawing board, or if that positive was in a specific area, such as an estrogen receptor in a high throughput assay, they’d follow that up with more comprehensive assays,” Schug continued. “A hit anywhere along the tiered system means chemists need to pull back, reanalyze, or throw the chemical out.”

The protocol is voluntary, explained Bruce Blumberg, Ph.D., a professor of developmental and cell biology at the University of California, Irvine. “We suggest this if you want to screen for endocrine activity in your chemicals and make them more green – this is the way we think you should do it. We’re providing an alternative approach interested parties can use to make the best chemicals they can,” he said.

Richard Denison, Ph.D., senior scientist at Environmental Defense Fund, welcomed the protocol’s development, saying, “It really flips the concept of tiered testing around.” Usually in tiered testing, a chemical only advances to the next level of testing if it is flagged for an effect at an earlier level. “[That] puts a huge question mark around the extent to which false negatives are being missed,” Denison added.

Christopher Weis, Ph.D.
“Dream big of a future in which green chemistry will move into the marketplace to the extent that this science will ultimately short-circuit the need for regulation,” Weis told workshop participants. “This will allow us to think ahead about potential chemical effects, rather than respond to problems that arise after chemicals are introduced.” (Photo courtesy of Steve McCaw)